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Non-reciprocal acoustic and elastic wave propagation has been shown to enable a plethora of effects analo-
gous to phenomena seen in quantum physics and electromagnetics, such as immunity from back-
scattering, unidirectional band gaps, and topologically protected states. These phenomena are of interest 
because they could lead to the design of direction-dependent acoustic devices that could be used to 
augment acoustic sensing and transmitting capabilities and may provide insight in the design of materials 
and structures for vibration and impact isolation. In the present work, we show that static and dynamic 
non-reciprocity can be achieved in structures composed of bi-linear springs, which have different, 
amplitude-independent moduli in tension and compression, by investigating the non-reciprocal response 
of a simple bi-linear structure composed of three springs and two masses in series. Non-reciprocity is 
demonstrated by calculating the response of each mass to forcing applied to the opposite mass, i.e. by 
applying Betti’s reciprocity theorem to analytical force-displacement relationships in the static sense, and 
by numerically calculating the response to harmonic forcing in the dynamic sense. Non-reciprocity can be 
identified via examination of the frequency response curves, making this system a promising candidate for 
experiments and the design of non-reciprocal devices.

© 2018 Acoustical Society of America. https://doi.org/10.1121/2.0000861 
Proceedings of Meetings on Acoustics, Vol. 34, 065002 (2018) Page 1



1. INTRODUCTION

Bi-linear constitutive relations are characterized by a stiffness that transitions between two val-
ues at some critical load and have been used to model contact forces,1–3 nonlinear beams,4–7 non-
linear elastic solids containing cracks,8 and many other systems incorporating abrupt, deformation-
dependent changes in stiffness. The non-smoothness of these piecewise constitutive relations gives
rise to complex, nonlinear dynamics, including strong harmonic generation and chaotic behav-
ior.1, 4, 9 Past works have developed theories for continuous bi-linear structures10, 11 and infinite
bi-linear spring-mass chains.12

One application of mechanical nonlinearity, which has recently received significant attention, is
the design of non-reciprocal materials and devices. Reciprocity is a fundamental physical principle
that requires that a received signal is unchanged when the positions of a source and receiver are
interchanged, and is generally obeyed except for certain specific scenarios (see Ref.,13 Ref.,14

and Refs.15, 16 for reciprocity theorems in the contexts of elasticity, elastodynamics, and acoustics,
respectively). In the acoustical domain, breaking reciprocity allows tailored wave propagation with
a directional dependence, including possibilities for one-way sound propagation,16–18 and could
lead to the design of acoustic devices aiding in numerous applications, such as vibration isolation,
signal processing, acoustic communications, and energy harvesting. In past works, nonlinearity
has been used to break reciprocity via harmonic generation.19–22 In another recent study, static
non-reciprocity was broken in a geometrically-nonlinear structure.23

In this work, we leverage the stiffness transition of the bi-linear force-displacement relationship
to break reciprocity in mechanical structures. Specifically, we present a spring-mass model with
two degrees of freedom, where some or all of the springs are bi-linear. The stiffness transition of
the bi-linear springs occurs at equilibrium, making the nonlinearity amplitude-independent. In the
static limit, non-reciprocity is shown using Betti’s reciprocity theorem, a well-known theorem of
elasticity.13 In the dynamic regime, non-reciprocity is evident in the response of the structure to
harmonic forcing, which could be accessible in future experimental realizations. This work aids
in the design of mechanically non-reciprocal materials and structures by providing a very simple
non-reciprocal model (e.g. in comparison to Ref.23), and could be used as a building block for
more complex systems.

2. THEORETICAL MODEL

The discrete model system under consideration is composed of two masses m1 and m2 con-
nected to each other and to ground by nonlinear springs, as shown in Fig. 1(a). The springs obey
the bi-linear force-displacement relation

F (x) = kx+ α sgn(x)x = k(x+ α|x|), (1)

as shown in Fig. 1(b), such that the stiffnesses in tension and compression are k(1+α) and k(1−α),
respectively. Thus, k can be interpreted as a mean stiffness and α determines the strength of the
bi-linearity. The displacements of the masses are denoted x1 and x2, dissipation is introduced via
the linear dashpots c1 and c2, and the two masses are subjected to external forces f1(t) and f2(t).

Applying the balance of linear momentum to each mass, the equations of motion are found as
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(a) (b)

Figure 1: (a) Schematic of the two-mass, bi-linear oscillator model. (b) Force-displacement rela-
tionship of the bi-linear springs.

m1ẍ1 + c1ẋ1 + (k1 + k2)x1 − k2x2 + k1α1|x1| − k2α2|x2 − x1| = f1(t) (2)
m2ẍ2 + c2ẋ2 + (k2 + k3)x2 − k2x1 − k3α3|x2|+ k2α2|x2 − x1| = f2(t), (3)

where the over-dots denote differentiation with respect to time t. To increase the applicability
of our results to real systems in the future, we non-dimensionalize this model by introducing the
re-scaled variables u1,2 = x1,2/x0 and τ =

√
k2/m2t, where x0 is an arbitrary characteristic

amplitude, and substituting them into Eqs. (2) and (3). In matrix form, the dimensionless equations
of motion are

M~̈u+ C~̇u+ K(~u)~u =

[
F1(τ)

F2(τ)

]
, (4)

with mass, damping, and stiffness matrices given by

M =

[
1 0

0 µ

]
, (5)

C =

[
γ1 0

0 γ2

]
, (6)

K(~u) =

[
1 + κ1(1 + α1 sgn(u1)) + α2 sgn(u2 − u1) −(1 + α2 sgn(u2 − u1))

−(1 + α2 sgn(u2 − u1)) 1 + κ3(1 + α3 sgn(u2)) + α2 sgn(u2 − u1)

]
,

(7)

respectively, where µ = m2/m1, γ1,2 = c1,2/
√
k2m1, κ1,3 = k1,3/k2, F1,2 = f1,2/(k2x0), and

Ω = ω
√
m1/k2 are dimensionless system parameters.
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3. STATIC ANALYSIS

In the static limit ( ~̈u = ~̇u = Ω = 0 and F1 and F2 constant in time), the dimensionless
equations of motion reduce to

K(~u)~u =

[
F1

F2

]
. (8)

Let ub,a be the displacement of mass b due to a force Fa applied to mass a. According to Betti’s
reciprocity theorem, for a reciprocal structure,

Fb · ub,a = Fa · ua,b. (9)

Thus, we must compare u2,1 and u1,2, which requires that we solve Eq. (8) for cases where F2 = 0
or F1 = 0. For the sake of illustration, we assume in this example that F1 and F2 are both oriented
in the positive direction, and that only the middle spring is bi-linear (i.e. α1 = α3 = 0).

For the case F2 = 0, we observe that the left spring is in tension, while the middle and right
springs are in compression; this implies sgn(u1) = sgn(u2) = 1 and sgn(u2 − u1) = −1,
which eliminates the ~u-dependence of K. Equation (8) can then be easily inverted, giving the
displacement of interest,

u2,1 =
(1− α2)F1

(1− α2)(κ1 + κ3) + κ1κ3
. (10)

Following a similar process for the case F1 = 0, for which the left and middle springs are in tension
and the right spring is in compression (implying sgn(u1) = sgn(u2) = sgn(u2 − u1) = 1), we
find

u1,2 =
(1 + α2)F2

(1 + α2)(κ1 + κ3) + κ1κ3
. (11)

Comparing Eq. (10) and Eq. (11) for the case F1 = F2, we find that u2,1 6= u1,2 unless α2 = 0.
Thus, Betti’s reciprocity theorem is broken when the middle spring is bi-linear. Finally, we remark
that this analysis can be carried out in the same manner for more complicated scenarios, e.g. with
F1 and F2 oriented in the negative direction and/or with more than one bi-linear spring.

4. DYNAMIC ANALYSIS

In this section, we extend the static analysis into the dynamic regime and observe non-reciprocity
for cases of harmonic forcing. In all the following numerical results, we use the parameters
µ = 0.5, κ1 = 0.5, κ3 = 0.75, α1 = 0, α2 = −(1/2), and α3 = −(1/3). These parameters
were chosen so that all three springs having the same stiffness in tension and different stiffnesses
in compression.
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Figure 2: Time histories of the displacements for (a) in-phase nonlinear normal mode with fre-
quency Ω1 = 0.87 and (b) out-of-phase nonlinear normal mode with frequency Ω2 = 1.96. Black
and red curves correspond to u1(τ) and u2(τ), respectively.

A. NONLINEAR NORMAL MODES

Before considering the system with harmonic driving, it is useful to consider the case of free,
undamped response. Specifically, we calculate the nonlinear normal modes (NNMs) of the system,
which are periodic (but not necessarily synchronous) motions that generally have frequency-energy
dependence.24 While the NNMs do not generally form a basis for all configurations of the structure
(and thus cannot be used for modal analysis in the classical sense), they can still provide a lot of
insight about the nonlinear dynamic behavior of a system under consideration. In particular, when
subjected to harmonic forcing, the resonances of the system typically occur near the NNMs.24, 25

To compute the NNMs of our system, we use a shooting method,26 which finds roots of the cost
function ~u(T, ~u0) − ~u0. Here, ~u0 = [u1(τ = 0), u2(τ = 0)] is a vector of initial conditions, T is
the period of the periodic solution, and ~u(T, ~u0) is the state of the system at time T (i.e. after time
evolution through Eq. (4)). In other words, the shooting algorithm finds a set of initial conditions
~u0 and period T that result in a periodic solution of the equations of motion. The cost function is
evaluated using direct numerical integration of Eq. (4), using a standard fourth-order Runge-Kutta
method, and convergence is achieved using Newton-Raphson iterations.

Time histories of computed NNMs of our system are shown in Fig. 2. Since the transitions
between the two stiffnesses of our bi-linear springs occur at their respective equilibrium lengths
(and thus there are no stiffening or softening effects with amplitude), the nonlinearity is amplitude-
independent, and the NNMs do not have frequency-energy dependence. Thus, the continuations of
the two NNMs shown into higher amplitudes have the same frequencies and mode shapes.

B. FORCED RESPONSE

Here we consider harmonic forcing, such that the right-hand side of Eq. (4) is[
F̃1

F̃2

]
cos(Ωτ), (12)
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Figure 3: Frequency response curves. Blue solid and red dotted curves correspond to H1,2(Ω)
and H2,1(Ω), respectively. Black dashed vertical lines indicate the frequencies Ω1 and Ω2 of the
nonlinear normal modes shown in Fig. 2(a) and Fig. 2(b), respectively. Black dotted vertical
lines indicate the frequencies whose second harmonics are Ω1 and Ω2. Thick black curve segments
indicate unstable solutions.

where F̃1 and F̃2 are constant driving amplitudes and Ω is a dimensionless frequency. Our goal is
to find the response of each mass to harmonic forcing applied to the opposite mass, as functions of
frequency. We define the frequency response functions

Ha,b(Ω) = max
0≤τ< 2π

Ω

(|ua,b(Ω, τ)|)/F̃b, (13)

or “the maximum magnitude of the response ua to harmonic forcing F̃b cos(Ωτ) applied to mb,
over one period.” In contrast to the frequency response functions of linear systems, which are
typically defined as ratios of amplitudes of harmonic signals, our definition in terms of absolute
value is needed because nonlinearity gives rise to multiple harmonic components in the response.
Weak viscous damping γ1 = γ2 = 0.1 is included to keep the response bounded at resonance.

To compute these frequency response curves, we use the same shooting algorithm as was used
to compute the NNMs, except that the Jacobian of the cost function must include additional terms
to account for the non-autonomous forcing.9 The frequency dependence is found using a pseudo-
arclength numerical continuation technique.26

Computed frequency response curves are shown in Fig. 3. It is clear that the two frequency
response curves H1,2(Ω) and H2,1(Ω) are not equal, which indicates non-reciprocity (in a recip-
rocal system, these two curves would be identical by definition). While these curves show strong
nonlinearity, as evidenced by resonances at the sub-harmonics of the two main resonance peaks
and unstable branches, the response is still amplitude independent.
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5. CONCLUSION

In this work, we have demonstrated mechanical non-reciprocity in a model for a bi-linear
spring-mass structure with two degrees of freedom. In the static limit, non-reciprocity is shown in
terms of Betti’s reciprocity theorem and arises due to different tensile and compressive stiffnesses.
When subjected to harmonic driving forces, non-reciprocity can be observed in the frequency
response curves. While the bi-linear constitutive relationship includes strong nonlinearity, the dy-
namics herein are amplitude-independent because the stiffness transitions occur when the springs
are un-deformed.

Experimental realization is well within reach for this model, as bi-linear structures with desired
stiffness ratios can be fabricated by incorporating contacting parts in additively-manufactured lat-
tice structures,27 and frequency response curves can be obtained using standard vibration testing
techniques.

Opportunities for future work include more in-depth analysis of the static non-reciprocal re-
sponse, particularly strategies for maximizing non-reciprocity when the forces act in multiple
directions; finding methods to predict the strength of dynamic non-reciprocity a priori, without
complicated numerical methods; design of non-reciprocal structures with more degrees of free-
dom; and extension to wave propagation in infinite chains of the structures considered here.

REFERENCES

1 S. W. Shaw and P. Holmes, “A periodically forced piecewise linear oscillator,” Journal of Sound
and Vibration, vol. 90, no. 1, pp. 129–155, 1983.

2 Y. Kim and S. Noah, “Stability and bifurcation analysis of oscillators with piecewise-linear char-
acteristics: a general approach,” Journal of Applied Mechanics, vol. 58, no. 2, pp. 545–553,
1991.

3 M. R. Brake, “The effect of the contact model on the impact-vibration response of continuous
and discrete systems,” Journal of Sound and Vibration, vol. 332, no. 15, pp. 3849–3878, 2013.

4 F. C. Moon and S. W. Shaw, “Chaotic vibrations of a beam with non-linear boundary conditions,”
International Journal of non-linear Mechanics, vol. 18, no. 6, pp. 465–477, 1983.

5 Y. Chu and M.-H. Shen, “Analysis of forced bilinear oscillators and the application to cracked
beam dynamics,” AIAA journal, vol. 30, no. 10, pp. 2512–2519, 1992.

6 M.-H. Shen and Y. Chu, “Vibrations of beams with a fatigue crack,” Computers & Structures,
vol. 45, no. 1, pp. 79–93, 1992.

7 M. Chati, R. Rand, and S. Mukherjee, “Modal analysis of a cracked beam,” Journal of sound
and vibration, vol. 207, no. 2, pp. 249–270, 1997.

8 M. Scalerandi, V. Agostini, P. P. Delsanto, K. Van Den Abeele, and P. A. Johnson, “Local inter-
action simulation approach to modelling nonclassical, nonlinear elastic behavior in solids,” The
Journal of the Acoustical Society of America, vol. 113, no. 6, pp. 3049–3059, 2003.

S. P. Wallen et al. Static and dynamic non-reciprocity in bi-linear structures

Proceedings of Meetings on Acoustics, Vol. 34, 065002 (2018) Page 7



9 C. Padmanabhan and R. Singh, “Analysis of periodically excited non-linear systems by a para-
metric continuation technique,” Journal of Sound and Vibration, vol. 184, no. 1, pp. 35–58,
1995.

10 Y. Benveniste, “One-dimensional wave propagation in materials with different moduli in tension
and compression,” International Journal of Engineering Science, vol. 18, no. 6, pp. 815–827,
1980.

11 S. Gavrilov and G. Herman, “Wave propagation in a semi-infinite heteromodular elastic bar
subjected to a harmonic loading,” Journal of Sound and Vibration, vol. 331, no. 20, pp. 4464–
4480, 2012.

12 M. S. Kuznetsova, E. Pasternak, and A. V. Dyskin, “Analysis of wave propagation in a discrete
chain of bilinear oscillators,” Nonlinear Processes in Geophysics, vol. 24, no. 3, pp. 455–460,
2017.

13 E. Betti, “Teoria della elasticita,” Il Nuovo Cimento (1869-1876), vol. 7, no. 1, pp. 69–97, 1872.

14 J. Achenbach, Reciprocity in elastodynamics. Cambridge University Press, 2003.

15 J. W. Strutt, “Some General Theorems relating to Vibrations,” Proceedings of the London Math-
ematical Society, vol. s1-4, pp. 357–368, nov 1871.

16 R. Fleury, D. L. Sounas, C. F. Sieck, M. R. Haberman, and A. Alù, “Sound isolation and gi-
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18 S. A. Cummer, J. Christensen, and A. Alù, “Controlling sound with acoustic metamaterials,”
Nature Reviews Materials, vol. 1, p. 16001, 2016.

19 B. Liang, X. Guo, J. Tu, D. Zhang, and J. Cheng, “An acoustic rectifier,” Nature materials, vol. 9,
no. 12, p. 989, 2010.

20 N. Boechler, G. Theocharis, and C. Daraio, “Bifurcation-based acoustic switching and rectifica-
tion.,” Nature materials, vol. 10, pp. 665–668, sep 2011.

21 Z. Zhang, I. Koroleva, L. I. Manevitch, L. A. Bergman, and A. F. Vakakis, “Nonreciprocal
acoustics and dynamics in the in-plane oscillations of a geometrically nonlinear lattice,” Physical
Review E, vol. 94, p. 032214, 2016.

22 J. Bunyan, K. J. Moore, A. Mojahed, M. D. Fronk, M. Leamy, S. Tawfick, and A. F. Vakakis,
“Acoustic nonreciprocity in a lattice incorporating nonlinearity, asymmetry, and internal scale
hierarchy: Experimental study,” Physical Review E, vol. 97, p. 052211, 2018.
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